Connect with us

FACEBOOK

2020 Developer Circles Community Challenge regional winners announced

Published

on

It’s often said that one of the best ways to learn is to become the teacher. That’s why, for this year’s Developer Circles Community Challenge, we invited developers and creators to put an innovative spin on technical education by creating tutorials that showcase the capabilities of Facebook technologies.

Participants created step-by-step written tutorials that demonstrated one or more features of open source tools including Hack, React, React Native, PyTorch and Docusaurus; as well as products including Messenger, Spark AR and Wit.ai.

For their efforts, we offered cash prizes, as well as the opportunity to have their tutorials credited and shared with fellow innovators across the Facebook ecosystem.

Our regional winners

As our first step in deciding the overall winners, we’re very excited to announce our regional winners today.

The teams behind the below inspiring tutorials have each won a US$2,000 cash prize, and will also be invited to make further enhancements to their projects by Monday November 30, in order to have a chance at the global prizes announced in mid-December.

Advertisement
free widgets for website

Asia Pacific

Intermediate/ Advanced

Create Smarter Messenger Experiences on Facebook with Bright
Messenger, Wit.AI

Covid Center Bot (Intermediate)
Messenger, Wit.AI

It’s Now Winter — AR Pop-up Card Tutorial Series
Spark AR

Advertisement
free widgets for website

Beginner

HayWord | Case Study for Making Real Word Chatbot Messenger
React, Messenger, Wit.AI

Spark AR Promo Card Filter Tutorial
Spark AR

IndoNLU: Finetuning Tutorial IndoBERT using PyTorch
PyTorch, Docusaurus

Europe

Advertisement
free widgets for website

Intermediate/Advanced

How to make Smoke in Spark AR
Spark AR

Creating colliders with Scripting – Spark AR
Spark AR

See also  No Oculus Studios Projects At E3, Facebook Confirms

DIY Alexa With the ESP32 and Wit.ai
Wit.AI

Beginner

Advertisement
free widgets for website

Calendar buddy
React, Wit.AI

Spark AR – Audio Visualizer Tutorial
Spark AR

React Custom Animation Hooks Tutorial
React

India

Intermediate/ Advanced

Advertisement
free widgets for website

Shockwave
Spark AR

Reactode
React

Transfer Learning Model hosted on Heroku using React & Flask
React, PyTorch

Beginner

ReactNative Tutor ( Learn React Native On the Go )
React Native

Advertisement
free widgets for website

Making Conversational Android Apps with Wit.ai
Wit.AI

DevCoder
Wit.AI

Latin America

Intermediate/ Advanced

Updating the Authorization header with Observables
React

Advertisement
free widgets for website

Use data from Facebook API in Messenger Bots
Messenger

Manipulating Multiple Scene Objects with Scripts in Spark AR
Spark AR

Beginner

Create a serverless Messenger bot with Wit.ai
Messenger, Wit.AI

Documenting with Docusaurus Version 2 for beginners
Docusaurus

Advertisement
free widgets for website

Spark AR – Art Series
Spark AR

Middle East and North Africa

Intermediate/ Advanced

violence Detection in videos using CNN + LSTM
PyTorch

360 Tours
React

Advertisement
free widgets for website

Beginner

Messenger Platform Tutorial (TDD Approach)
Messenger

Customer Service Messenger Bot
Messenger, Wit.ai

Build an Encryptor/Decryptor Chatbot on Messenger using Wit
Messenger, Wit.ai

North America

Advertisement
free widgets for website

Intermediate/ Advanced

Your Claw Machine
Spark AR

Wit.ai CI and CLI
Wit.ai

Job Finder Bot tutorial
PyTorch

Beginner

Advertisement
free widgets for website

Pneumonet-Building an AI COVID-19 Product with Pytorch
Messenger, Wit.ai

Chatbot for Class
React, Docusaurus

Getting Started with React Hooks: useState and useEffect
React

Sub-Saharan Africa

Intermediate/ Advanced

Advertisement
free widgets for website

Rabbit Coder (Spark AR Tutorial)
Spark AR

Pytorch For Information Extraction
PyTorch

Architecting and Designing a React Native Application
React Native

Beginner

Wiki Education
Messenger, Wit.ai

Advertisement
free widgets for website

Live Chess
React, Docusaurus

Fruit Classifier
PyTorch, Messenger

See also  Facebook keeps banning Qanon and hate speech. It won't ever work.

Our local language winners

In acknowledgment of our diverse, global community, we’re also pleased to offer a set of special local language prizes for the first time. The below winning tutorials have each won a US$1,500 prize.

Arabic

Intermediate/ Advanced

Advertisement
free widgets for website

Violence Detection in videos
PyTorch

Beginner

Adding Drag & Drop to React components
React, Docusaurus

French

Intermediate/ Advanced

Advertisement
free widgets for website

Systeme De Reconnaissance Du Cache Nez
PyTorch

Beginner

Learn the basics of Spark AR by creating your FanMask filter
Spark AR

Indonesian

Intermediate/ Advanced

Advertisement
free widgets for website

Gameo
React, PyTorch, Docusaurus

Beginner

HayWord | Case Study for Making Real Word Messenger Apps
React, Messenger, Wit.ai

Spanish

Intermediate/ Advanced

Advertisement
free widgets for website

Chatbots As A Service con Messenger Platform
Messenger

Beginner

Tutorial web voice control using Wit.ai
Wit.ai

New building opportunities coming soon

Congratulations to all of these trail-blazing winners, and to everyone who took part in the Challenge. Stay tuned to our Facebook Developer Circles page for more information on our global winners announcement in December!

We’ll also be hosting a range of challenges including hackathons, as well as product immersion opportunities, for developers and creators in 2021. Don’t forget to sign up for our email newsletter to be among the first to know about these initiatives.

Advertisement
free widgets for website

Stay safe and we can’t wait to continue supporting you as you #BuildwithFacebook.

Facebook Developers

Continue Reading
Advertisement free widgets for website

FACEBOOK

Resources for Completing App Store Data Practice Questionnaires for Apps That Include the Facebook or Audience Network SDK

Published

on

By

resources-for-completing-app-store-data-practice-questionnaires-for-apps-that-include-the-facebook-or-audience-network-sdk

Resources for Completing App Store Data Practice Questionnaires for Apps That Include the Facebook or Audience Network SDK

First seen at developers.facebook.com

See also  Facebook bans all Myanmar military-linked accounts
Continue Reading

FACEBOOK

Resources for Completing App Store Data Practice Questionnaires for Apps That Include the Facebook or Audience Network SDK

Published

on

By

resources-for-completing-app-store-data-practice-questionnaires-for-apps-that-include-the-facebook-or-audience-network-sdk

Updated July 18: Developers and advertising partners may be required to share information on their app’s privacy practices in third party app stores, such as Google Play and the Apple App Store, including the functionality of SDKs provided by Meta. To help make it easier for you to complete these requirements, we have consolidated information that explains our data collection practices for the Facebook and Audience Network SDKs.

Facebook SDK

To provide functionality within the Facebook SDK, we may receive and process certain contact, location, identifier, and device information associated with Facebook users and their use of your application. The information we receive depends on what SDK features 3rd party applications use and we have structured the document below according to these features.

App Ads, Facebook Analytics, & App Events

Facebook App Events allow you to measure the performance of your app using Facebook Analytics, measure conversions associated with Facebook ads, and build audiences to acquire new users as well as re-engage existing users. There are a number of different ways your app can use app events to keep track of when people take specific actions such as installing your app or completing a purchase.

With Facebook SDK, there are app events that are automatically logged (app installs, app launches, and in-app purchases) and collected for Facebook Analytics unless you disable automatic event logging. Developers determine what events to send to Facebook from a list of standard events, or via a custom event.

When developers send Facebook custom events, these events could include data types outside of standard events. Developers control sending these events to Facebook either directly via application code or in Events Manager for codeless app events. Developers can review their code and Events Manager to determine which data types they are sending to Facebook. It’s the developer’s responsibility to ensure this is reflected in their application’s privacy policy.

Advertisement
free widgets for website

Advanced Matching

Developers may also send us additional user contact information in code, or via the Events Manager. Advanced matching functionality may use the following data, if sent:

  • email address, name, phone number, physical address (city, state or province, zip or postal code and country), gender, and date of birth.
See also  Facebook bans all Myanmar military-linked accounts

Facebook Login

There are two scenarios for applications that use Facebook Login via the Facebook SDK: Authenticated Sign Up or Sign In, and User Data Access via Permissions. For authentication, a unique, app-specific identifier tied to a user’s Facebook Account enables the user to sign in to your app. For Data Access, a user must explicitly grant your app permission to access data.

Note: Since Facebook Login is part of the Facebook SDK, we may collect other information referenced here when you use Facebook Login, depending on your settings.

Device Information

We may also receive and process the following information if your app is integrated with the Facebook SDK:

  • Device identifiers;
  • Device attributes, such as device model and screen dimensions, CPU core, storage size, SDK version, OS and app versions, and app package name; and
  • Networking information, such as the name of the mobile operator or ISP, language, time zone, and IP address.

Audience Network SDK

We may receive and process the following information when you use the Audience Network SDK to integrate Audience Network ads in your app:

  • Device identifiers;
  • Device attributes, such as device model and screen dimensions, operating system, mediation platform and SDK versions; and
  • Ad performance information, such as impressions, clicks, placement, and viewability.

First seen at developers.facebook.com

Continue Reading

FACEBOOK

Enabling Faster Python Authoring With Wasabi

Published

on

By

enabling-faster-python-authoring-with-wasabi

This article was written by Omer Dunay, Kun Jiang, Nachi Nagappan, Matt Bridges and Karim Nakad.


Motivation

At Meta, Python is one of the most used programming languages in terms of both lines of code and number of users. Everyday, we have thousands of developers working with Python to launch new features, fix bugs and develop the most sophisticated machine learning models. As such, it is important to ensure that our Python developers are productive and efficient by giving them state-of-the-art tools.

Introducing Wasabi

Today we introduce Wasabi, a Python language service that implements the language server protocol (LSP) and is designed to help our developers use Python easier and faster. Wasabi assists our developers to write Python code with a series of advanced features, including:

  • Lints and diagnostics: These are available as the user types.
  • Auto import quick fix: This is available for undefined-variable lint.
  • Global symbols autocomplete: When a user types a prefix, all symbols (e.g. function names, class names) that are defined in other files and start with that prefix will appear in the autocomplete suggestion automatically.
  • Organize Imports + Remove unused: A quick fix that removes all unused imports and reformats the import section according to pep8 rules. This feature is powered by other tools that are built inside Meta such as libCST that helps with safe code refactoring.
  • Python snippets: Snippet suggestions are available as the user types for common code patterns.

Additionally, Wasabi is a surface-agnostic service that can be deployed into multiple code repositories and various development environments (e.g., VSCode, Bento Notebook). Since its debut, Wasabi has been adopted by tens of thousands of Python users at Meta across Facebook, Instagram, Infrastructure teams and many more.

Figure 1: Example for global symbols autocomplete, one of Wasabi’s features

Language Services at Meta Scale

A major design requirement for language services is low latency / user responsiveness. Autocomplete suggestions, lints and quickFixes should appear to the developer immediately as they type.

Advertisement
free widgets for website

At Meta, code is organized in a monorepo, meaning that developers have access to all python files as they develop. This approach has major advantages for the developer workflow including better discoverability, transparency, easier to share libraries and increased collaboration between teams. It also introduces unique challenges for building developer tools such as language services that need to handle hundreds of thousands of files.

See also  Facebook, Instagram fell offline for some after mega-outage - The Register

The scaling problem is one of the reasons that we tried to avoid using off-the-shelf language services available in the industry (e.g., pyright, jedi) to perform those operations. Most of those tools were built in the mindset of a relatively small to medium workspace of projects, maybe with the assumptions of thousands of files for large projects for operations that require o(repo) information.

For example, consider the “auto import” quick fix for undefined variables. In order to suggest all available symbols the language server needs to read all source files, the quick fix parses them and keeps an in-memory cache of all parsed symbols in order to respond to requests.

While this may scale to be performed in a single process on the development machine for small-medium repositories, this approach doesn’t scale in the monorepo use case. Reading and parsing hundreds of thousands of files can take many minutes, which means slow startup times and frustrated developers. Moving to an in-memory cache might help latency, but also may not fit in a single machine’s memory.

For example, assume an average python file takes roughly 10ms to be parsed and to extract symbols in a standard error recoverable parser. This means that on 1000 files it can take 10 seconds to initialize which is a fairly reasonable startup time. Running it on 1M files would take 166 minutes which is obviously a too lengthy startup time.

Advertisement
free widgets for website

How Wasabi Works

Offline + Online Processing:

In order to support low latency in Meta scale repositories, Wasabi is powered by two phases of parsing, background processing (offline) done by an external indexers, and local processing of locally changed “dirty files” (online):

  1. A background process indexes all committed source files and maintains the parsed symbols in a special database (glean) that is designed for storing code symbol information.
  2. Wasabi, which is a local process running on the user machine, calculates the delta between the base revision, stack of diffs and uncommitted changes that the user currently has, and extracts symbols only out of those “dirty” files. Since this set of “dirty” files is relatively small, the operation is performed very fast.
  3. Upon an LSP request such as auto import, Wasabi parses the abstract syntax tree (AST) of the file, then based on the context of the cursor, creates a query for both glean and local changes symbols, merges the results and returns it to the user.
See also  Facebook keeps banning Qanon and hate speech. It won't ever work.

As a result, all Wasabi features are low latency and available to the user seamlessly as they type.

Note: Wasabi currently doesn’t handle the potential delta between the revision that glean indexed (happens once every few hours) and the locally base revision that the user currently has. We plan on adding that in the future.

Figure 2: Wasabi’s high level architecture

Ranking the Results

In some cases, due to the scale of the repository, there may be many valid suggestions in the set of results. For example, consider “auto import” suggestions for the “utils” symbol. There may be many modules that define a class named “utils” across the repository, therefore we invest in ranking the results to ensure that users see the most relevant suggestions on the top.

Advertisement
free widgets for website

For example, auto import ranking is done by taking into account:

  • Locality:
    • The distance of the suggested module directory path from the directory paths of modules that are already imported in this file.
    • The distance of the suggested module directory path from the current directory path of the local file.
    • Whether the file has been locally changed (“dirty” files are ranked higher).
  • Usage: The number of occurrences the import statement was used by other files in the repository.

To measure our success, we measured the index in the suggestion list of an accepted suggestion and noted that in almost all cases the accepted suggestion was ranked in one of top 3 suggestions.

Positive feedbacks from developers

After launching Wasabi to several pilot runs inside Meta, we have received numerous positive feedbacks from our developers. Here is one example of the quote from a software engineer at Instagram:

“I’ve been using Wasabi for a couple months now, it’s been a boon to my productivity! Working in Instagram Server, especially on larger files, warnings from pyre are fairly slow. With Wasabi, they’re lightning fast 😃!”

“I use features like spelling errors and auto import several times an hour. This probably makes my development workflow 10% faster on average (rough guess, might be more, definitely not less), a pretty huge improvement!”

As noted above, Wasabi has made a meaningful change to keep our developers productive and make them feel delightful.

Advertisement
free widgets for website

The metric to measure authoring velocity

In order to quantitatively understand how much value Wasabi has delivered to our Python developers, we have considered a number of metrics to measure its impact. Ultimately, we landed on a metric that we call ‘Authoring Velocity’ to measure how fast developers write code. In essence, Authoring Velocity is the inverse function of the time taken on a specific diff (a collection of code changes) during the authoring stage. The authoring stage starts from the timestamp when a developer checks out from the source control repo to the timestamp when the diff is created. We have also normalized it against the number of lines of code changed in the diff, as a proxy for diff size, to offset any possible variance. The greater the value for ‘Authoring Velocity,’ the faster we think developers write their code.

See also  Meet the Rustaceans: Chris Konstad

Figure 3: Authoring Velocity Metric Formula

The result

With the metric defined, we ran an experiment to measure the difference that Wasabi brings to our developers. Specifically, we selected ~700 developers who had never used Wasabi before, and then randomly put them into two independent groups at a 50:50 split ratio. For these developers in the test group, they were enabled with Wasabi when they wrote in Python, whereas there was no change for those in the control group. For both groups, we compare the changes in relative metric values before and after the Wasabi enablement. From our results, we find that for developers in the test group, the median value of authoring velocity has increased by 20% after they started using Wasabi. Meanwhile, we don’t see any significant change in the control group before and after, which is expected.

Figure 4: Authoring Velocity measurements for control and test groups, before and after Wasabi was rolled out to the test group.

Summary

With Python’s unprecedented growth, it is an exciting time to be working in the area to make it better and handy to use. Together with its advanced features, Wasabi has successfully improved developers’ productivity at Meta, allowing them to write Python faster and easier with a positive developer experience. We hope that our prototype and findings can benefit more people in the broader Python community.

Advertisement
free widgets for website

To learn more about Meta Open Source, visit our open source site, subscribe to our YouTube channel, or follow us on Twitter, Facebook and LinkedIn.

First seen at developers.facebook.com

Continue Reading

Trending